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Abstract— This research work investigates the global chaos 

synchronization of identical chaotic systems based on sliding 

mode control theory and Lyapunov stability theory. The paper 

begins with a problem statement on global chaos synchronization 

of chaotic systems. A general result is derived for the global 

chaos synchronization of chaotic systems using slide mode 

control and this result is established using Lyapunov stability 

theory. Next, as an application of this general result, a sliding 

mode controller is derived for the global chaos synchronization 

of identical Liu-Yang chaotic systems (2010). Liu-Yang system is 

a new Lorenz-like chaotic system, which has very different fixed 

points: one saddle and two stable node-foci. Hence, this new 

chaotic system is topologically non-equivalent to Lorenz and 

other Lorenz-like systems. Moreover, in the sense defined by 

Vaněček and Čelikovský (1996), the Liu-Yang system (2010) 

connects the original Lorenz system (1964) and the original Chen 

system (1999) and represents a transition from one to the other. 

MATLAB simulations are shown to illustrate the sliding 

controller design for the global chaos synchronization of identical 

Liu-Yang chaotic systems. 

 

Keywords— Chaos, chaotic systems, synchronization, sliding 

mode control, Lyapunov stability theory, Liu-Yang system. 

I. INTRODUCTION 

Chaotic behaviour is an important feature, which is 

observed in some nonlinear dynamical systems. Chaotic 

behaviour was suspected well over 100 years ago, but it was 

established only a few decades ago due to the availability of 

computational power that enabled scientists to plot 

simulations of nonlinear dynamical systems. 

A chaotic system is usually characterized by its extreme 

sensitivity of behaviour to initial conditions. Small changes in 

an initial state will make a very large difference in the 

behaviour of the system at the future states. This is usually 

called as the „Butterfly Effect’.  

The Lyapunov exponent is a measure of the divergence of 

points that are initially very close and can be used to quantify 

chaotic systems.  Thus, there is a spectrum of Lyapunov 

exponents, which are equal in number to the dimension of the 

phase space. It is common to refer to the largest Lyapunov 

exponent as the maximal Lyapunov exponent (MLE). A 

positive maximal Lyapunov exponent and phase space 

compactness are usually taken as defining conditions for a 

chaotic system. 

In 1963, Lorenz discovered that a very small difference in 

the initial conditions led to large changes in his deterministic 

weather model [1]. There are many well-known paradigms of 

3-dimensional chaotic systems like Rössler system ([2], 

1976), Newton-Leipnik system ([3], 1981), Chen system ([4], 

1999), Lü-Chen system ([5], 2002), Liu system ([6], 2004), 

Tigan system ([7], 2008), etc.   

Chaotic systems have several applications in science 

engineering. Some important applications can be cited as 

secure communications [8-10], cryptosystems [11-12], 

physics [13-14], chemical reactions [15-16], biology [17-18], 

robotics [19-20], cardiology [21-23], neural networks [24], 

etc. 

Synchronization of chaotic systems is a phenomenon that 

occurs when a chaotic system drives another chaotic system. 

Because of the butterfly effect in chaos theory, which causes 

the exponential divergence of the trajectories of two identical 

chaotic systems started with nearly the same initial conditions, 

synchronizing two chaotic systems is apparently a very 

challenging problem in the chaos literature. 

In most of the chaos synchronization problems, the master-

slave or drive-response terminology is used. If a particular 

chaotic system is called the master or drive system and 

another chaotic system is called the slave or response system, 

then the idea of chaos synchronization is to use the output of 

the master system to control the slave system so that the states 

of the slave system track the states of the master system 

asymptotically.  

In the last two decades, various schemes have been 

developed for the synchronization of chaotic systems such as 

PC method [25], OGY method [26], active control method 

[27-30], adaptive control method [31-34], backstepping 

control method [35-38], sampled-data feedback method [39], 

time-delay feedback method [40], sliding mode control 

method [41-45], etc. 

In this paper, we derive a general result for the global chaos 

synchronization of chaotic systems using sliding mode control 

(SMC) theory [46-48].  

The sliding mode control approach is recognized as an 

efficient tool for designing robust controllers for linear or 

nonlinear control systems operating under uncertainty 

conditions.  

A major advantage of sliding mode control is low 

sensitivity to parameter variations in the plant and 

disturbances affecting the plant, which eliminates the 

necessity of exact modeling of the plant. 
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In the sliding mode control theory, the control dynamics 

will have two sequential modes, viz. the reaching mode and 

the sliding mode. Basically, a sliding mode controller (SMC) 

design consists of two parts: hyperplane design and controller 

design. A hyperplane is first designed via the pole-placement 

approach in the modern control theory and a controller is then 

designed based on the sliding condition. The stability of the 

overall system is guaranteed by the sliding condition and by a 

stable hyperplane.  

This research work is organized as follows. Section II 

discusses the problem statement and research methodology. In 

this section, we detail the sliding mode controller (SMC) 

design for the global chaos synchronization of identical 

chaotic systems.  

The rest of the paper deals with the sliding mode controller 

design for the global chaos synchronization of identical Liu-

Yang systems ([49], 2010).  

Section III describes the qualitative properties of the 

strange attractor exhibited by the Liu-Yang system.  

In Section IV, we describe the sliding mode controller 

design for the global chaos synchronization of identical Liu-

Yang systems. MATLAB simulations are shown to validate 

and illustrate the sliding mode controller design for the global 

chaos synchronization for the Liu-Yang systems. Section V 

contains the conclusions of this research work. 

II. MAIN RESULTS 

First, we give a problem statement of global chaos 

synchronization of a pair of chaotic systems called the master 

and slave systems. 

As the master system, we consider the chaotic system 

  ( ),x Ax f x         (1) 

where 
nx R is the state of the system, A is the matrix of 

system parameters and ( )f x contains the nonlinear parts of 

the system. 

As the slave system, we consider the controlled (identical) 

chaotic system 

  ( ) ,y Ay f y u           (2) 

where 
nyR is the state of the system, and u is the 

controller to be designed. 

The synchronization error is defined by 

 e y x        (3) 

Then the error dynamics is obtained as 

( ) ( )e Ae f y f x        (4) 

which can be equivalently expressed as 

( , ) ,e Ae g x y u         (5) 

where 

 ( , ) ( ) ( ).g x y f y f x      (6) 

For the SMC design, we first set 

( ) ( , ) ( ),u t g x y Bv t       (7) 

where B is an ( 1)n column vector chosen such that 

( , )A B is controllable.  

If we substitute (7) into (5), we obtain the closed-loop error 

dynamics as  

  ,e Ae Bv        (8) 

which is a linear time-invariant control system with single 

input .v  

Hence, we have converted the original problem of global 

chaos synchronization of identical chaotic systems (1) and (2) 

into an equivalent problem of globally stabilizing the error 

dynamics (8) by a suitable choice of the feedback control (7). 

In the SMC design, we first define the sliding variable as 

  1 1 2 2( ) ,n ns e Ce c e c e c e        (9) 

where C is an (1 )n row vector to be determined. 

The sliding manifold S is defined as the hyperplane 

 : ( ) 0nS e s e Ce   R    (10) 

where C is chosen so that ( , )C A is controllable. 

Let us assume that a sliding motion occurs on .S  

In sliding mode,  

     0s    and  0s CAe CBv      (11) 

Assuming that 0,CB  the sliding motion is affected by 

the so-called equivalent control given by 
1

eq ( ) ( )  ( )v t CB CA e t     (12) 

Consequently, the equivalent dynamics in the sliding phase 

is defined by  

  
1[ ( ) ] ,e I B CB C Ae Ee      (13) 

where  

 
1[ ( ) ]E I B CB C A      (14) 

It is easy to very that E is independent of the control and 

has at most ( 1)n nonzero eigenvalues, depending on the 

chosen switching surface, while the associated eigenvectors 

belong to ker( ).C  

Since ( , )C A is controllable, by the procedure given in 

sliding control theory [46-48], we can choose C so that E has 

any desired ( 1)n  stable eigenvalues.  

Thus, the dynamics in the sliding mode is globally 

asymptotically stable.  

Finally, for the SMC design, we use the constant plus 

proportional rate reaching law   

 sgn( )s q s ks       (15) 

where sgn( ) denotes the sign function and the gains 0,q 

0k  are found so that the sliding condition is satisfied and 

the sliding motion will occur. 

From the equations (11) and (12), we finally get the sliding 

control ( )v t as 

  1( ) ( ) ( ) sgn( )v t CB C kI A e q s      (16) 

The main result of this section is stated and proved as 

follows. 
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Theorem 1. The identical chaotic systems (1) and (2) are 

globally and asymptotically synchronized for all initial 

conditions (0), (0) nx y R by the sliding control law 

( ) ( , ) ( )u t g x y Bv t      (17) 

where v is as defined by Eq. (16), B is an ( 1)n vector such 

that ( , )A B is controllable, C is an (1 )n vector such that 

( , )C A is controllable and that the matrix E defined by (14) 

has ( 1)n stable eigenvalues.   

Proof.  Substituting the control laws (17) and (16) into the 

error dynamics (5), we obtain 

  1( ) ( ) sgn( )e Ae B CB C kI A e q s       (18) 

We prove the global asymptotic stability of the error system 

(18) by considering the candidate Lyapunov function 

  
21

( ) ( )
2

V e s e       (19) 

The sliding mode motion is characterized by the equations 

( ) 0s e   and ( ) 0s e       (20) 

By the choice of E , the dynamics in the sliding mode is 

globally asymptotically stable. 

When ( ) 0,s e  ( ) 0.V e   

Also, when ( ) 0,s e  differentiating V along the error 

dynamics (18) or the equivalent dynamics (15), we obtain 

 
2( ) ( ) ( ) sgn( ) 0V e s e s e ks q s        (21) 

Hence, by Lyapunov stability theory [50], the error 

dynamics (18) is globally asymptotically stable for all initial 

conditions (0) .ne R  

This completes the proof.   

III. STRANGE ATTRACTOR OF LIU-YANG SYSTEM 

This section gives details of the strange attractor of Liu-

Yang system ([49], 2010), which is a new Lorenz-like chaotic 

system.  

The Liu-Yang system is described by the 3-D dynamics 

 

1 2 1

2 1 1 3

3 3 1 2

( )x a x x

x cx x x

x bx x x

 

 

  

     (22) 

where 1 2 3, ,x x x are the states and , ,a b c are constant, 

positive parameters of the system.  

The Liu-Yang system (22) has a strange attractor for the 

parametric values 

 35,   3,   35a b c       (23) 

The strange attractor of the Liu-Yang system (22) is shown 

in Fig. 1. Also, the Lyapunov exponents are found as 

1 2 30.57018,   0,   13.237LE LE LE       

The Liu-Yang system (22) has one saddle and two stable 

node-foci. Thus, the Liu-Yang system (22) is topologically 

non-equivalent to the original Lorenz and other Lorenz-like 

chaotic systems.  

 

Fig. 1  Strange Attractor of the Liu-Yang System 

IV.  SLIDING MODE CONTROLLER DESIGN FOR THE GLOBAL 

CHAOS SYNCHRONIZATION OF LIU-YANG SYSTEMS 

In this section, we use the results of Section II to derive a 

new sliding mode controller for achieving global chaos 

synchronization of identical Liu-Yang systems (2010). 

As the master system, we take the Liu-Yang system 

  

1 2 1

2 1 1 3

3 3 1 2

( )x a x x

x cx x x

x bx x x

 

 

  
   

  (24) 

where 1 2 3, ,x x x are the states and , ,a b c are constant, 

positive parameters of the system.  

As the slave system, we take the controlled Liu-Yang 

system  

  

1 2 1 1

2 1 1 3 2

3 3 1 2 3

( )y a y y u

y cy y y u

y by y y u

  

  

   

       (25) 

where 1 2 3, ,y y y  are the states and 1 2 3, ,u u u are the 

controllers to be determined. 

The synchronization error is defined by 

  

1 1 1

2 2 2

3 3 3

e y x

e y x

e y x

 

 

 

      (26) 

Then the error dynamics is obtained as 

  

1 2 1 1

2 1 1 3 1 3 2

3 3 1 2 1 2 3

( )e a e e u

e ce y y x x u

e be y y x x u

  

   

    

    (27) 
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We can rewrite the error dynamics (27) in matrix form as 

( , )e Ae g x y u        (28) 

where 

0

0 0

0 0

a a

A c

b

 
 


 
  

     (29) 

and  

1 3 1 3

1 2 1 2

0

( , )g x y y y x x

y y x x

 
 

  
 
  

    (30) 

The sliding mode controller u for achieving global chaos 

synchronization of the Liu-Yang systems (24) and (25) is 

carried out by the procedure outlined in Section II. 

First, we set u as 

( ) ( , ) ( ),u t g x y Bv t       (31) 

where B is chosen so that ( , )A B  is controllable. 

A simple choice of B is 

 

1

1 .

1

B

 
 


 
  

      (32) 

In the chaotic case, the parameter values of the Liu-Yang 

system are chosen as 

  35,   3,   35a b c  
    

  (33) 

The sliding mode variable is chosen as 

  1 26 1 0 6s Ce e e e        (34) 

which renders the dynamics in sliding mode asymptotically 

stable. 

Next, we take the sliding mode gains as 

 6k  and 0.2q       (35) 

From Eq. (16) of Section II, we obtain the control v as 

  1 2( ) 41.8 40.8 0.04sgn( )v t e e s      (36) 

Applying Theorem 1, we get the following result. 

Theorem 2. The identical Liu-Yang systems (24) and (25) 

are globally and asymptotically synchronized for all initial 

conditions 
3(0), (0)x y R with the sliding mode controller 

u defined by (31).  

For numerical simulations, we use classical fourth-order 

Runge-Kutta method (MATLAB) with step-size 
8

10h


 for 

solving the identical Liu-Yang systems (24) and (25) when the 

active sliding mode control u defined by (31) is applied.  

The initial conditions of the Liu-Yang system (24) are 

taken as 

 1 2 3(0) 3.4,  (0) 5.7,  (0) 6.1x x x     

The initial conditions of the Liu-Yang system (24) are 

taken as 

 1 2 3(0) 7.2,  (0) 3.5,  (0) 4.8y y y     

Fig.2 depicts the synchronization of the identical Liu-Yang 

chaotic systems (24) and (25). 

Fig. 3 depicts the time-history of the synchronization errors 

1 2 3, , .e e e  

 

Fig. 2  Synchronization of Identical Liu-Yang Chaotic Systems 

 

Fig. 3  Time-History of the Synchronization Errors 1 2 3, ,e e e  

V. CONCLUSIONS 

Synchronization of chaotic systems is an important research 

problem in chaos literature where two chaotic systems, called 

master and slave systems, are synchronized using control 

laws. This paper derived new results for the design of sliding 

mode controllers for identical chaotic systems. The main 

result was proved using Lyapunov stability theory. As an 

application of this result, an effective sliding mode controller 

was designed for the global chaos synchronization of identical 

Liu-Yang systems (2010). Numerical simulations using 

MATLAB were shown to validate and demonstrate our sliding 

mode controller design for the global chaos synchronization of 

identical Liu-Yang systems.   
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